If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y+5y^2=315
We move all terms to the left:
10y+5y^2-(315)=0
a = 5; b = 10; c = -315;
Δ = b2-4ac
Δ = 102-4·5·(-315)
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-80}{2*5}=\frac{-90}{10} =-9 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+80}{2*5}=\frac{70}{10} =7 $
| 27=17p | | 63x=53 | | 7x-2=-50 | | -4r^2-4=6 | | 9y+5=32 | | 2x+5+17x-14+12x=180 | | 5(3x-5)=56 | | 3d2−6d−5=0 | | -9x-4=-94 | | 2x+5+17x-14+12x=360 | | −5z+4=34 | | 9x-22+5x-7+34+61=360 | | -3(u+3)=2u-6+2(5u+3) | | f=8(18)=22.80 | | 3x+2=3x+13/3 | | 5x-10+30=90 | | 9x-22+5x-7+34+61=180 | | 9x-22+5x-7+95=180 | | 9x-22+5x-7+34=180 | | -3w-27=2(w+4) | | x/14=6/16 | | 1.1x=625 | | 4(y+3)=-6y+22 | | -8y+1=-3(y+3) | | x2+12x=-22 | | -3u+18=9(u-2) | | (n^2–6n+3)=-4n | | (x+5)^2-50=0 | | 3(x-1)(x+1)+(x+2)(x+2)=(2x+1)(2x+1) | | 9+4y-7= | | 4x/3=32/2 | | 26=6x+5(x+3) |